:autogenerated: histocartography.preprocessing package ====================================== .. automodule:: histocartography.preprocessing Submodules: .. toctree:: :maxdepth: 1 histocartography.preprocessing.assignment_matrix histocartography.preprocessing.feature_extraction histocartography.preprocessing.graph_builders histocartography.preprocessing.io histocartography.preprocessing.nuclei_concept_extraction histocartography.preprocessing.nuclei_extraction histocartography.preprocessing.stain_normalizers histocartography.preprocessing.stats histocartography.preprocessing.superpixel histocartography.preprocessing.tissue_mask histocartography.preprocessing.utils Summary ------- ``__all__`` Classes: .. list-table:: * - :class:`AnnotationPostProcessor ` - Base pipelines step * - :class:`AssignmnentMatrixBuilder ` - Assigning low-level instances to high-level instances using instance maps. * - :class:`AugmentedDeepFeatureExtractor ` - Helper class to extract deep features from instance maps with different augmentations * - :class:`ColorMergedSuperpixelExtractor ` - Helper class to extract superpixels from images * - :class:`DGLGraphLoader ` - Base pipelines step * - :class:`DeepFeatureExtractor ` - Helper class to extract deep features from instance maps * - :class:`GaussianTissueMask ` - Helper class to extract tissue mask from images * - :class:`GraphDiameter ` - Base pipelines step * - :class:`GridAugmentedDeepFeatureExtractor ` - Base class for feature extraction * - :class:`GridDeepFeatureExtractor ` - Base class for feature extraction * - :class:`H5Loader ` - Base pipelines step * - :class:`HandcraftedFeatureExtractor ` - Helper class to extract handcrafted features from instance maps * - :class:`ImageLoader ` - Base pipelines step * - :class:`KNNGraphBuilder ` - k-Nearest Neighbors Graph class for graph building. * - :class:`MacenkoStainNormalizer ` - Stain normalization based on the method of: M. * - :class:`NucleiConceptExtractor ` - Class for Nuclei concept extraction. * - :class:`NucleiExtractor ` - Nuclei extraction * - :class:`RAGGraphBuilder ` - Super-pixel Graphs class for graph building. * - :class:`SLICSuperpixelExtractor ` - Use the SLIC algorithm to extract superpixels. * - :class:`SuperpixelCounter ` - Base pipelines step * - :class:`VahadaneStainNormalizer ` - Stain normalization inspired by method of: A. Reference --------- If you use `histocartography` in your projects, please cite the following: .. code-block:: python @inproceedings{pati2021, title = {Hierarchical Graph Representations for Digital Pathology}, author = {Pushpak Pati, Guillaume Jaume, Antonio Foncubierta, Florinda Feroce, Anna Maria Anniciello, Giosuè Scognamiglio, Nadia Brancati, Maryse Fiche, Estelle Dubruc, Daniel Riccio, Maurizio Di Bonito, Giuseppe De Pietro, Gerardo Botti, Jean-Philippe Thiran, Maria Frucci, Orcun Goksel, Maria Gabrani}, booktitle = {https://arxiv.org/pdf/2102.11057}, year = {2021} }