.. histocartography documentation master file, created by sphinx-quickstart on Mon Apr 19 12:15:21 2021. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. Welcome to histocartography's documentation! ============================================ `histocartography` is a python-based library designed to facilitate the development of graph-based computational pathology pipelines. The library includes plug-and-play modules to perform: * standard histology image pre-processing (e.g., *stain normalization*, *nuclei detection*, *tissue detection*) * entity-graph representation building (e.g. *cell graph*, *tissue graph*, *hierarchical graph*) * modeling Graph Neural Networks (e.g. *GIN*, *PNA*) * feature attribution based graph interpretability techniques (e.g. *GraphGradCAM*, *GraphGradCAM++*, *GNNExplainer*) * visualization tools All the functionalities are grouped under a user-friendly API. .. toctree:: :maxdepth: 3 :caption: Contents: api/histocartography Indices and tables ------------------ * :ref:`genindex` * :ref:`modindex` Reference --------- If you use `histocartography` in your projects, please cite the following: .. code-block:: python @inproceedings{pati2021, title = {Hierarchical Graph Representations for Digital Pathology}, author = {Pushpak Pati, Guillaume Jaume, Antonio Foncubierta, Florinda Feroce, Anna Maria Anniciello, Giosuè Scognamiglio, Nadia Brancati, Maryse Fiche, Estelle Dubruc, Daniel Riccio, Maurizio Di Bonito, Giuseppe De Pietro, Gerardo Botti, Jean-Philippe Thiran, Maria Frucci, Orcun Goksel, Maria Gabrani}, booktitle = {https://arxiv.org/pdf/2102.11057}, year = {2021} }