histocartography.ml.layers.multi_layer_gnn module¶
Summary¶
Classes:
MultiLayer network that concatenates several gnn layers. |
- class MultiLayerGNN(layer_type='gin_layer', input_dim=None, output_dim=32, num_layers=3, readout_op='concat', readout_type='mean', **kwargs)[source]¶
Bases:
torch.nn.modules.module.Module
MultiLayer network that concatenates several gnn layers.
- __init__(layer_type='gin_layer', input_dim=None, output_dim=32, num_layers=3, readout_op='concat', readout_type='mean', **kwargs) → None[source]¶
MultiLayer GNN constructor.
- Parameters
layer_type (str) – GNN layer type. Default to “gin_layer”.
input_dim (int) – Input dimension of the node features. Default to None.
output_dim (int) – Output dimension of the node embeddings. Default to 32.
num_layers (int) – Number of GNN layers. Default to 3.
readout_op (str) – How the intermediate node embeddings are aggregated. Default to “concat”.
readout_type (str) – Global node pooling operation. Default to “mean”.
Reference¶
If you use histocartography in your projects, please cite the following:
@inproceedings{pati2021,
title = {Hierarchical Graph Representations for Digital Pathology},
author = {Pushpak Pati, Guillaume Jaume, Antonio Foncubierta, Florinda Feroce, Anna Maria Anniciello, Giosuè Scognamiglio, Nadia Brancati, Maryse Fiche, Estelle Dubruc, Daniel Riccio, Maurizio Di Bonito, Giuseppe De Pietro, Gerardo Botti, Jean-Philippe Thiran, Maria Frucci, Orcun Goksel, Maria Gabrani},
booktitle = {https://arxiv.org/pdf/2102.11057},
year = {2021}
}