histocartography.preprocessing package¶
Submodules:
- histocartography.preprocessing.assignment_matrix module
 - histocartography.preprocessing.feature_extraction module
 - histocartography.preprocessing.graph_builders module
 - histocartography.preprocessing.io module
 - histocartography.preprocessing.nuclei_concept_extraction module
 - histocartography.preprocessing.nuclei_extraction module
 - histocartography.preprocessing.stain_normalizers module
 - histocartography.preprocessing.stats module
 - histocartography.preprocessing.superpixel module
 - histocartography.preprocessing.tissue_mask module
 - histocartography.preprocessing.utils module
 
Summary¶
__all__ Classes:
Base pipelines step  | 
|
Assigning low-level instances to high-level instances using instance maps.  | 
|
Helper class to extract deep features from instance maps with different augmentations  | 
|
Helper class to extract superpixels from images  | 
|
Base pipelines step  | 
|
Helper class to extract deep features from instance maps  | 
|
Helper class to extract tissue mask from images  | 
|
Base pipelines step  | 
|
Base class for feature extraction  | 
|
Base class for feature extraction  | 
|
Base pipelines step  | 
|
Helper class to extract handcrafted features from instance maps  | 
|
Base pipelines step  | 
|
k-Nearest Neighbors Graph class for graph building.  | 
|
Stain normalization based on the method of: M.  | 
|
Class for Nuclei concept extraction.  | 
|
Nuclei extraction  | 
|
Super-pixel Graphs class for graph building.  | 
|
Use the SLIC algorithm to extract superpixels.  | 
|
Base pipelines step  | 
|
Stain normalization inspired by method of: A.  | 
Reference¶
If you use histocartography in your projects, please cite the following:
@inproceedings{pati2021,
    title = {Hierarchical Graph Representations for Digital Pathology},
    author = {Pushpak Pati, Guillaume Jaume, Antonio Foncubierta, Florinda Feroce, Anna Maria Anniciello, Giosuè Scognamiglio, Nadia Brancati, Maryse Fiche, Estelle Dubruc, Daniel Riccio, Maurizio Di Bonito, Giuseppe De Pietro, Gerardo Botti, Jean-Philippe Thiran, Maria Frucci, Orcun Goksel, Maria Gabrani},
    booktitle = {https://arxiv.org/pdf/2102.11057},
    year = {2021}
}