histocartography.preprocessing package¶
Submodules:
- histocartography.preprocessing.assignment_matrix module
- histocartography.preprocessing.feature_extraction module
- histocartography.preprocessing.graph_builders module
- histocartography.preprocessing.io module
- histocartography.preprocessing.nuclei_concept_extraction module
- histocartography.preprocessing.nuclei_extraction module
- histocartography.preprocessing.stain_normalizers module
- histocartography.preprocessing.stats module
- histocartography.preprocessing.superpixel module
- histocartography.preprocessing.tissue_mask module
- histocartography.preprocessing.utils module
Summary¶
__all__
Classes:
Base pipelines step |
|
Assigning low-level instances to high-level instances using instance maps. |
|
Helper class to extract deep features from instance maps with different augmentations |
|
Helper class to extract superpixels from images |
|
Base pipelines step |
|
Helper class to extract deep features from instance maps |
|
Helper class to extract tissue mask from images |
|
Base pipelines step |
|
Base class for feature extraction |
|
Base class for feature extraction |
|
Base pipelines step |
|
Helper class to extract handcrafted features from instance maps |
|
Base pipelines step |
|
k-Nearest Neighbors Graph class for graph building. |
|
Stain normalization based on the method of: M. |
|
Class for Nuclei concept extraction. |
|
Nuclei extraction |
|
Super-pixel Graphs class for graph building. |
|
Use the SLIC algorithm to extract superpixels. |
|
Base pipelines step |
|
Stain normalization inspired by method of: A. |
Reference¶
If you use histocartography in your projects, please cite the following:
@inproceedings{pati2021,
title = {Hierarchical Graph Representations for Digital Pathology},
author = {Pushpak Pati, Guillaume Jaume, Antonio Foncubierta, Florinda Feroce, Anna Maria Anniciello, Giosuè Scognamiglio, Nadia Brancati, Maryse Fiche, Estelle Dubruc, Daniel Riccio, Maurizio Di Bonito, Giuseppe De Pietro, Gerardo Botti, Jean-Philippe Thiran, Maria Frucci, Orcun Goksel, Maria Gabrani},
booktitle = {https://arxiv.org/pdf/2102.11057},
year = {2021}
}