histocartography.ml.models.base_model module¶
Summary¶
Classes:
Functions:
- class BaseModel(class_split: Optional[str] = None, num_classes: Optional[int] = None, pretrained: bool = False)[source]¶
Bases:
torch.nn.modules.module.Module
- __init__(class_split: Optional[str] = None, num_classes: Optional[int] = None, pretrained: bool = False) → None[source]¶
Base model constructor.
- Parameters
class_split (str) – Class split. For instance in the BRACS dataset, one can specify a 3-class split as: “benign+pathologicalbenign+udhVSadh+feaVSdcis+malignant”. Defaults to None.
num_classes (int) – Number of classes. Used if class split is not provided. Defaults to None.
pretrained (bool) – If loading pretrained checkpoint. Currently all the pretrained were trained on the BRACS dataset. Defaults to False.
Reference¶
If you use histocartography in your projects, please cite the following:
@inproceedings{pati2021,
title = {Hierarchical Graph Representations for Digital Pathology},
author = {Pushpak Pati, Guillaume Jaume, Antonio Foncubierta, Florinda Feroce, Anna Maria Anniciello, Giosuè Scognamiglio, Nadia Brancati, Maryse Fiche, Estelle Dubruc, Daniel Riccio, Maurizio Di Bonito, Giuseppe De Pietro, Gerardo Botti, Jean-Philippe Thiran, Maria Frucci, Orcun Goksel, Maria Gabrani},
booktitle = {https://arxiv.org/pdf/2102.11057},
year = {2021}
}