histocartography.ml.models.hact_model module¶
Summary¶
Classes:
HACT model. |
- class HACTModel(cg_gnn_params: Dict, tg_gnn_params: Dict, classification_params: Dict, cg_node_dim: int, tg_node_dim: int, **kwargs)[source]¶
Bases:
histocartography.ml.models.base_model.BaseModel
HACT model. The information for grading tumors lies at different scales. By building 2 graphs, one at the cell level and one at the object level (modeled with super pixels), we can extract graph embeddings that once combined provide a multi-scale representation of a RoI. This implementation is using GNN layers and spatial assignment matrix to fuse the 2 layers.
- __init__(cg_gnn_params: Dict, tg_gnn_params: Dict, classification_params: Dict, cg_node_dim: int, tg_node_dim: int, **kwargs) → None[source]¶
TissueGraphModel model constructor
- Parameters
cg_gnn_params (Dict) – Cell Graph GNN configuration parameters.
tg_gnn_params (Dict) – Tissue Graph GNN configuration parameters.
classification_params (Dict) – classification configuration parameters.
cg_node_dim (int) – Cell node feature dimension.
tg_node_dim (int) – Tissue node feature dimension.
- forward(cell_graph: Union[dgl.graph.DGLGraph, dgl.graph.batch], tissue_graph: Union[dgl.graph.DGLGraph, dgl.graph.batch], assignment_matrix: torch.Tensor) → torch.Tensor[source]¶
Foward pass.
- Parameters
cell_graph (Union[dgl.DGLGraph, dgl.batch]) – Cell graph or Batch of cell graphs.
tissue_graph (Union[dgl.DGLGraph, dgl.batch]) – Tissue graph or Batch of tissue graphs.
assignment_matrix (torch.Tensor) – List of assignment matrices
- Returns
model output.
- Return type
torch.Tensor
Reference¶
If you use histocartography in your projects, please cite the following:
@inproceedings{pati2021,
title = {Hierarchical Graph Representations for Digital Pathology},
author = {Pushpak Pati, Guillaume Jaume, Antonio Foncubierta, Florinda Feroce, Anna Maria Anniciello, Giosuè Scognamiglio, Nadia Brancati, Maryse Fiche, Estelle Dubruc, Daniel Riccio, Maurizio Di Bonito, Giuseppe De Pietro, Gerardo Botti, Jean-Philippe Thiran, Maria Frucci, Orcun Goksel, Maria Gabrani},
booktitle = {https://arxiv.org/pdf/2102.11057},
year = {2021}
}