histocartography.ml.models.tissue_graph_model module¶
Summary¶
Classes:
Tissue Graph Model. |
- class TissueGraphModel(gnn_params: Dict, classification_params: Dict, node_dim: int, **kwargs)[source]¶
Bases:
histocartography.ml.models.base_model.BaseModel
Tissue Graph Model. Apply a GNN on tissue level.
- __init__(gnn_params: Dict, classification_params: Dict, node_dim: int, **kwargs)[source]¶
TissueGraphModel model constructor.
- Parameters
gnn_params (Dict) – GNN configuration parameters.
classification_params (Dict) – classification configuration parameters.
node_dim (int) – Tissue node feature dimension.
- forward(graph: Union[dgl.graph.DGLGraph, Tuple[None._VariableFunctions.tensor, None._VariableFunctions.tensor]]) → None._VariableFunctions.tensor[source]¶
Foward pass.
- Parameters
graph (Union[dgl.DGLGraph, Tuple[torch.tensor, torch.tensor]]) – Tissue graph to process.
- Returns
Model output.
- Return type
torch.tensor
Reference¶
If you use histocartography in your projects, please cite the following:
@inproceedings{pati2021,
title = {Hierarchical Graph Representations for Digital Pathology},
author = {Pushpak Pati, Guillaume Jaume, Antonio Foncubierta, Florinda Feroce, Anna Maria Anniciello, Giosuè Scognamiglio, Nadia Brancati, Maryse Fiche, Estelle Dubruc, Daniel Riccio, Maurizio Di Bonito, Giuseppe De Pietro, Gerardo Botti, Jean-Philippe Thiran, Maria Frucci, Orcun Goksel, Maria Gabrani},
booktitle = {https://arxiv.org/pdf/2102.11057},
year = {2021}
}