histocartography.preprocessing.nuclei_extraction module¶
Detect and Classify nuclei from an image with the HoverNet model.
Summary¶
Classes:
Helper class to transform an image as a set of patched wrapped in a pytorch dataset |
|
Nuclei extraction |
Functions:
Post processing script for image tiles |
|
Process Nuclei Prediction with XY Coordinate Map |
- class NucleiExtractor(pretrained_data: str = 'pannuke', model_path: Optional[str] = None, batch_size: Optional[int] = None, **kwargs)[source]¶
Bases:
histocartography.pipeline.PipelineStep
Nuclei extraction
- __init__(pretrained_data: str = 'pannuke', model_path: Optional[str] = None, batch_size: Optional[int] = None, **kwargs) → None[source]¶
Create a nuclei extractor
- Parameters
pretrained_data (str) – Load checkpoint pretrained on some data. Options are ‘pannuke’ or ‘monusac’. Default to ‘pannuke’.
model_path (str) – Path to a pre-trained model. If none, the checkpoint specified in pretrained_data will be used. Default to None.
batch_size (int, optional) – Batch size. Defaults to None.
- precompute(link_path: Union[None, str, pathlib.Path] = None, precompute_path: Union[None, str, pathlib.Path] = None) → None[source]¶
Precompute all necessary information
- Parameters
link_path (Union[None, str, Path], optional) – Path to link to. Defaults to None.
precompute_path (Union[None, str, Path], optional) – Path to save precomputation outputs. Defaults to None.
- class ImageToPatchDataset(image: numpy.ndarray)[source]¶
Bases:
torch.utils.data.dataset.Dataset
Helper class to transform an image as a set of patched wrapped in a pytorch dataset
- process_np_hv_channels(pred: numpy.ndarray) → numpy.ndarray[source]¶
Process Nuclei Prediction with XY Coordinate Map
- Parameters
pred (np.ndarray) – HoverNet model output, that contains: - channel 0 contain probability map of nuclei - channel 1 contains X-map - channel 2 contains Y-map
- Returns
instance map
- Return type
pred_instance (np.ndarray)
- process_instance(pred_map: numpy.ndarray, output_dtype: str = 'uint16') → numpy.ndarray[source]¶
Post processing script for image tiles
- Parameters
pred_map (np.ndarray) – commbined output of np and hv branches
output_dtype (str) – data type of output
- Returns
pixel-wise nuclear instance segmentation prediction
- Return type
pred_inst (np.ndarray)
Reference¶
If you use histocartography in your projects, please cite the following:
@inproceedings{pati2021,
title = {Hierarchical Graph Representations for Digital Pathology},
author = {Pushpak Pati, Guillaume Jaume, Antonio Foncubierta, Florinda Feroce, Anna Maria Anniciello, Giosuè Scognamiglio, Nadia Brancati, Maryse Fiche, Estelle Dubruc, Daniel Riccio, Maurizio Di Bonito, Giuseppe De Pietro, Gerardo Botti, Jean-Philippe Thiran, Maria Frucci, Orcun Goksel, Maria Gabrani},
booktitle = {https://arxiv.org/pdf/2102.11057},
year = {2021}
}