histocartography.preprocessing.superpixel module¶
This module handles everything related to superpixels
Summary¶
Classes:
Use the SLIC algorithm to extract superpixels. |
|
Helper class to extract superpixels from images |
- class SuperpixelExtractor(nr_superpixels: Optional[int] = None, superpixel_size: Optional[int] = None, max_nr_superpixels: Optional[int] = None, blur_kernel_size: Optional[float] = 1, compactness: Optional[int] = 20, max_iterations: Optional[int] = 10, threshold: Optional[float] = 0.03, connectivity: Optional[int] = 2, color_space: Optional[str] = 'rgb', downsampling_factor: Optional[int] = 1, **kwargs)[source]¶
Bases:
histocartography.pipeline.PipelineStep
Helper class to extract superpixels from images
- __init__(nr_superpixels: Optional[int] = None, superpixel_size: Optional[int] = None, max_nr_superpixels: Optional[int] = None, blur_kernel_size: Optional[float] = 1, compactness: Optional[int] = 20, max_iterations: Optional[int] = 10, threshold: Optional[float] = 0.03, connectivity: Optional[int] = 2, color_space: Optional[str] = 'rgb', downsampling_factor: Optional[int] = 1, **kwargs) → None[source]¶
Abstract class that extracts superpixels from RGB Images :param nr_superpixels: The number of super pixels before any merging. :type nr_superpixels: None, int :param superpixel_size: The size of super pixels before any merging. :type superpixel_size: None, int :param max_nr_superpixels: Upper bound for the number of super pixels.
Useful when providing a superpixel size.
- Parameters
blur_kernel_size (float, optional) – Size of the blur kernel. Defaults to 0.
compactness (int, optional) – Compactness of the superpixels. Defaults to 30.
max_iterations (int, optional) – Number of iterations of the slic algorithm. Defaults to 10.
threshold (float, optional) – Connectivity threshold. Defaults to 0.03.
connectivity (int, optional) – Connectivity for merging graph. Defaults to 2.
downsampling_factor (int, optional) – Downsampling factor from the input image resolution. Defaults to 1.
- precompute(link_path: Union[None, str, pathlib.Path] = None, precompute_path: Union[None, str, pathlib.Path] = None) → None[source]¶
Precompute all necessary information
- Parameters
link_path (Union[None, str, Path], optional) – Path to link to. Defaults to None.
precompute_path (Union[None, str, Path], optional) – Path to save precomputation outputs. Defaults to None.
- class SLICSuperpixelExtractor(**kwargs)[source]¶
Bases:
histocartography.preprocessing.superpixel.SuperpixelExtractor
Use the SLIC algorithm to extract superpixels.
- class MergedSuperpixelExtractor(**kwargs)[source]¶
Bases:
histocartography.preprocessing.superpixel.SuperpixelExtractor
- class ColorMergedSuperpixelExtractor(w_hist: float = 0.5, w_mean: float = 0.5, **kwargs)[source]¶
Bases:
histocartography.preprocessing.superpixel.MergedSuperpixelExtractor
- __init__(w_hist: float = 0.5, w_mean: float = 0.5, **kwargs) → None[source]¶
Superpixel merger based on color attibutes taken from the HACT-Net Implementation :param w_hist: Weight of the histogram features for merging. Defaults to 0.5. :type w_hist: float, optional :param w_mean: Weight of the mean features for merging. Defaults to 0.5. :type w_mean: float, optional
Reference¶
If you use histocartography in your projects, please cite the following:
@inproceedings{pati2021,
title = {Hierarchical Graph Representations for Digital Pathology},
author = {Pushpak Pati, Guillaume Jaume, Antonio Foncubierta, Florinda Feroce, Anna Maria Anniciello, Giosuè Scognamiglio, Nadia Brancati, Maryse Fiche, Estelle Dubruc, Daniel Riccio, Maurizio Di Bonito, Giuseppe De Pietro, Gerardo Botti, Jean-Philippe Thiran, Maria Frucci, Orcun Goksel, Maria Gabrani},
booktitle = {https://arxiv.org/pdf/2102.11057},
year = {2021}
}